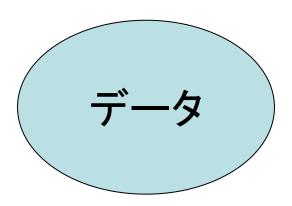
DNA鑑定における仮説と事象の空間

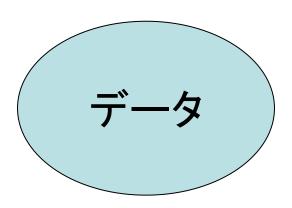

検察側の主張 vs. 弁護側の主張を 伝統的な統計検定の枠組みから眺めてみる

> 法数学勉強会 2010/08/28 京大(医)統計遺伝学 山田 亮

DNA鑑定

検察側の主張

弁護側の主張

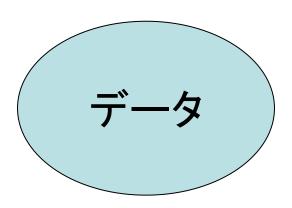


裁判員・裁判官側の主張・判断

論文発表

著者側の主張

レフリー側の主張



エディタの主張・判断

薬開発

開発部門の主張

経営部門の主張

トップの主張・判断

特許申請

発明側の主張

?側の主張

データ

特許庁の主張・判断

- 裁判
 - 疑わしきは、罰せず?

- 論文
 - 統計的に有意であれば掲載する?
 - 読んで面白ければ掲載する?

- ・薬の開発
 - 社全体でペイするならば続行する?
- 特許
 - データがどうあれ、儲かる種なら押える

- 特許
 - データがどうあれ、儲かる種なら押える

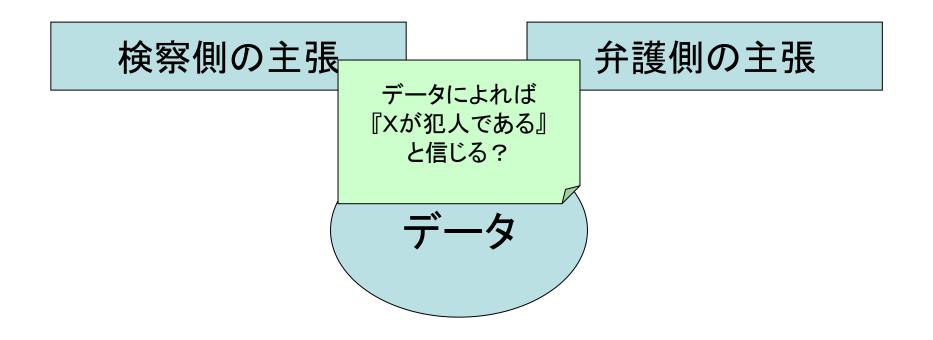
- 裁判
 - 疑わしきは、罰せず?
- 論文
 - 統計的に有意であれば掲載する?
 - 読んで面白ければ掲載する?
- ・薬の開発
 - 社全体でペイするならば続行する?
- 特許
 - データがどうあれ、儲かる種なら押える

- ・ データ→主張・判断を数値化
 - やり方は色々?
 - 納得がいくかどうか
 - 万人に共通な言葉かどうか
 - 論理学
 - 数学
- ・ 確率・尤度・事前確率・事後確率・ベイズの定 理

いくつかの視点

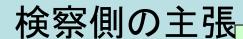
- 尤度と尤度比
- 珍しさの尺度 P値
- ・ (最尤)推定と推定の信頼区間

作ったスライドのどこまで話せるかは不明・・・


時間が余ったら、DNA鑑定の現実に即した例について検討したいです。

時間が足りなかったら、またの機会に続きを検討でき ればと思います。

ゆっくり行きましょう。


尤度と尤度比

DNA鑑定

裁判員・裁判官側の主張・判断

DNA鑑定

弁護側の主張

データによれば 『Xが犯人である』 と信じる?

『Xが犯人で<mark>ある</mark>』とすると データの説明が容易なので 『Xが犯人で<mark>ある</mark>』と言えます。 データ

『Xが犯人で<mark>ない</mark>』とすると データの説明が容易なので 『Xが犯人で<mark>ない</mark>』と言えます。

裁判員・裁判官側の主張・判断

『Xが犯人で<mark>ある</mark>』とすると データの説明が容易なので 『Xが犯人で<mark>ある</mark>』と言えます。

説明が容易

『Xが犯人で<mark>ない</mark>』とすると データの説明が容易なので 『Xが犯人で<mark>ない</mark>』と言えます。

- ある仮説で説明が容易だからって、その仮説が正しいとは限らないでしょう
- ある仮説Aが、別の仮説Bよりも説明が容易なら、AをBより信用しましょう
- 尤度
 - 仮説のもっともらしさ
 - 説明が容易な程度
- 尤度比
 - 仮説Aの尤度は仮説Bの尤度の●倍

「観察データを得る」

「Xが犯人であること」			
	観察データ	観察データ以 外のデータ	確率の和

犯人である A+B=1

犯人ではない C+D=1

B+D

A+B+C+D

A+C

「観察データを得る」 と 「Xが犯人であること」

仮説	観察データ	観察データ以外のデータ	確率の和
犯人である	A	В	A+B=1

犯人ではないCDC+D=1A+CB+DA+B+C+D

「観察データを得る」 と 「Xが犯人であること」

事象

	観察データ	観察データ以外のデータ	確率の和
犯人である	A	В	A+B=1

犯人ではない C D C+D=1
A+C B+D A+B+C+D

仮説の軸と事象の軸

			事 家
仮説	観察データ	観察データ以外のデータ	確率の和
犯人である	A	В	A+B=1
犯人ではない	С	D	C+D=1
	A+C	B+D	A+B+C+D

仮説の軸について

「Xが犯人である」仮説 と 「Xが犯人でない」仮説

	観察データ 『Xが犯	観察データ以外のデータ人である』	確率の和
犯人である		察データを る確率 B	A+B=1
犯人ではない	С	D	C+D=1
	A+C	B+D	A+B+C+D

「観察データを得る」 と 「Xが犯人であること」

観察デー		観察データ以 人である。データ	確率の和
得たとき Xが犯人であ		察データを る確率	A+B=1
犯人ではない	С	D	C+D=1
尤度の和	A+C	B+D	A+B+C+D

4つの数字A, B, C, D 解釈は1つ

	観察データ	観察データ 以外のデー タ	確率の和
犯人である	A	В	A+B=1
犯人ではない	С	D	C+D=1
	A+C	B+D	A+B+C+D

4つの数字A, B, C, D 解釈は1つ

『Xが犯人で<mark>ある</mark>』とすると データの説明が容易なので 『Xが犯人で<mark>ある</mark>』と言えます。 「Aが大きい」 『Xが犯人でない』とすると データの説明が容易なので 『Xが犯人でない』と言えます。 「Cが大きい」

- AとCとを較べて大きい 方はどちらか
- 大差がついているか

\boldsymbol{A}	\boldsymbol{C}
$\overline{A+C}$,	$\overline{A+C}$,


	観察 データ	観察 データ以 外の データ	確率の 和
犯人であ る	А	В	A+B=1
犯人で はない	С	D	C+D=1
	A+C	B+D	A+B+C+ D

ある仮説Aが、別の仮説Bよりも説明が容易なら、AをBより信用しましょう

『Xが犯人で<mark>ある</mark>』とすると データの説明が容易なので 『Xが犯人で<mark>ある</mark>』と言えます。 「Aが大きい」 『Xが犯人で<mark>ない</mark>』とすると データの説明が容易なので 『Xが犯人で<mark>ない</mark>』と言えます。 「Cが大きい」

- AとCとを較べて大きい 方はどちらか
- 大差がついているか

\boldsymbol{A}	\boldsymbol{C}
$\overline{A+C}$,	$\overline{A+C}$,

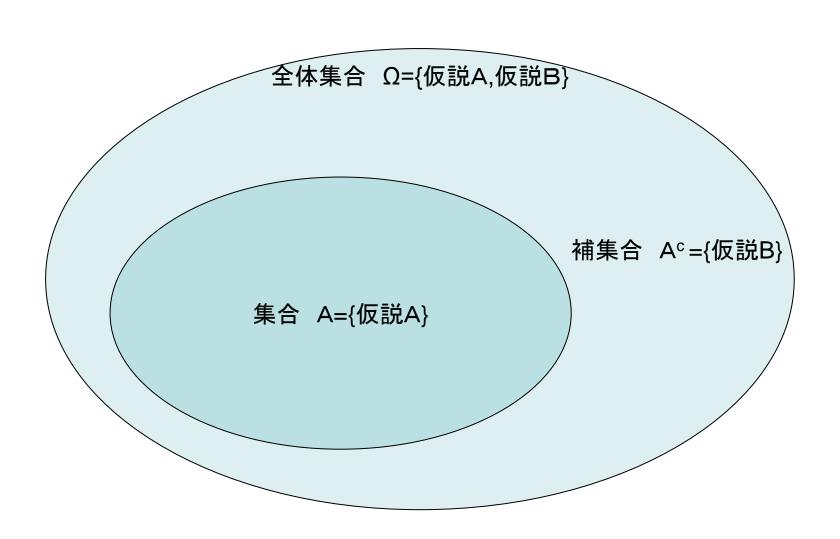
	観察 データ	観察 データ以 外の データ	確率の 和
犯人であ る	А	В	A+B=1
犯人で はない	С	D	C+D=1
	A+C	B+D	A+B+C+ D

- AとCとを較べて大きい 方はどちらか
- 大差がついているか

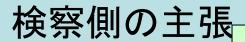
$$rac{A}{A+C}, \quad rac{C}{A+C}, \quad rac{A}{C}$$
 尤度比

どうして割り算をする? どうして比をとる?

	観察 データ	観察 データ以 外の データ	確率の 和
犯人であ る	А	В	A+B=1
犯人で はない	С	D	C+D=1
	A+C	B+D	A+B+C+ D


集合としての仮説と仮説空間

- 仮説A『Xが犯人である』
- 仮説B『Xが犯人でない』


AかBか。それ以外はない

$$\Omega = \{A, B\}$$
 $\Omega = \{A\} \cup \{B\}$

全体集合 集合と補集合

犯人はXか●か

弁護側の主張

データによれば 『Xが犯人である』 と信じる?

『Xが犯人で<mark>ある</mark>』とすると 『X以外の●が犯人である』とするより データの説明が容易なので 『Xが犯人で<mark>ある</mark>』と言えます。 『Xが犯人で<mark>ない</mark>』とすると 『X以外の●が犯人である』ことになり 『Xが犯人で<mark>ある</mark>』とするより データの説明が容易なので 『Xが犯人で<mark>ない</mark>』と言えます。

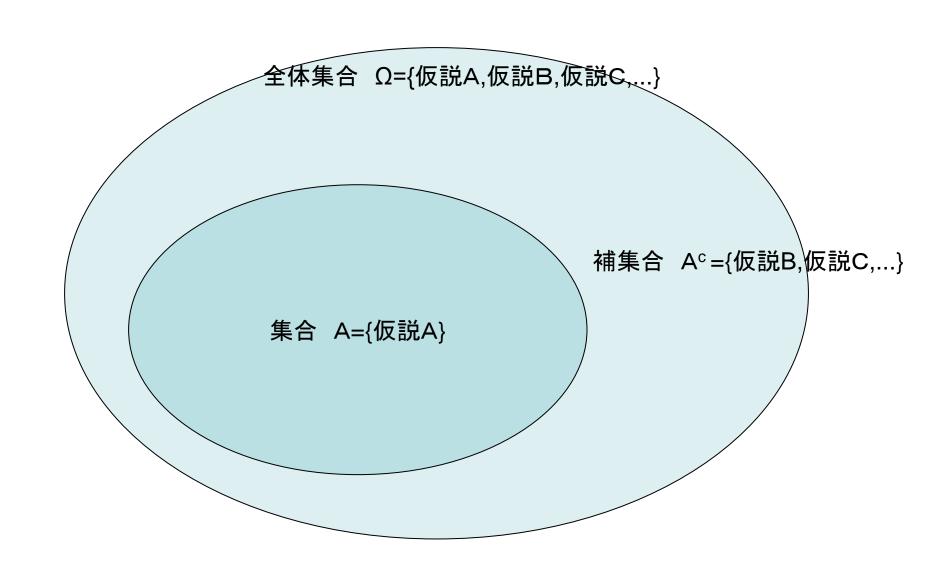
裁判員・裁判官側の主張・判断

4つの数字A, B, C, D 解釈は1つ

C

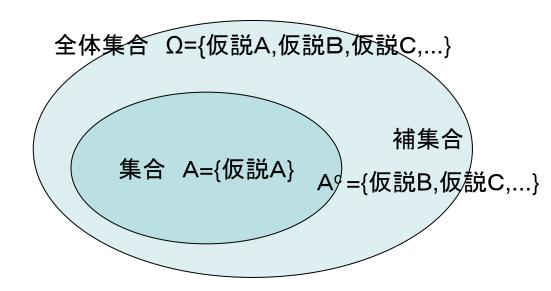
『Xが犯人で<mark>ある</mark>』とすると 『X以外の●が犯人である』とするより データの説明が容易なので 『Xが犯人で<mark>ある</mark>』と言えます。 「Aが大きい」 『Xが犯人で<mark>ない</mark>』とすると 『X以外の●が犯人である』ことになり 『Xが犯人で<mark>ある</mark>』とするより データの説明が容易なので 『Xが犯人で<mark>ない</mark>』と言えます。 「Cが大きい」

- AとCとを較べて大きい ほうはどちらか
- 大差がついているか


\boldsymbol{A}	\boldsymbol{C}	
$\overline{A+C}$,	$\overline{A+C}$,	

	観察 データ	観察 データ以 外の データ	確率の 和
Xが犯人 である	А	В	A+B=1
●が犯 人である	С	D	C+D=1
	A+C	B+D	A+B+C+ D

「Xは犯人である」対「Xは犯人ではない」「Xは犯人である」対「○は犯人である」


- •「Xは犯人ではない」とき、「犯人は誰か?」
 - 「犯人は●」「犯人は▲」「犯人は■」・・・

- •「犯人の候補は全部で何人?」
- •「犯人の候補のリストは?」

仮説空間と仮説

- ・ 仮説空間は全体集合
- 仮説は仮説空間の要素
- 要素は排他的
- ・ 要素の和は全体

もう少しつっこんで

- •「Xは犯人ではない」とき、「犯人は誰か?」
- •「Xは犯人ではない」とき、「犯人はいるか?」

- DNA試料で考えると
 - 「試料DNAはXのDNAである」
 - 「試料DNAは●のDNAである」
 - 「試料DNAは誰かのDNAである」
 - 「試料DNAは誰のDNAでもない」

一番大事なのは、数え落としがないこと 数え上げた上で、必要なら消去しよう

仮説の数だけ尤度

犯人は誰?	尤度	
Α	La	
В	Lb	
X	Lx	
犯人はいない	LO	

犯人は誰?	尤度	
A	La	
В	Lb	
X	Lx	
犯人はいない	LO	

$$\frac{A}{A+C}, \quad \frac{C}{A+C}, \quad \frac{A}{C}$$

犯人は誰?	尤度	
А	La	
В	Lb	
X	Lx	
犯人はいない	LO	

$$\frac{A}{A+C}, \quad \frac{C}{A+C}, \quad \frac{A}{C}$$

Lx/La

Lx/Lb

..

Lx/L0

のすべてが十分に大きい

Lx/(La+Lb+...Lx+L0) が十分に大きい

犯人は誰?	尤度	
А	La	
В	Lb	
•••		
X	Lx	
犯人はいない	LO	

$$\frac{A}{A+C}$$
, $\frac{C}{A+C}$, $\frac{A}{C}$

Lx/La>t

Lx/Lb>t

..

Lx/L0>t

のすべてが十分に大きい

Lx/(La+Lb+...Lx+L0)>t/Nh

が十分に大きい

Nh: X以外の仮説数

犯人は誰?	尤度	
А	La	
В	Lb	
X	Lx	
犯人はいない	LO	

$$\frac{A}{A+C}$$
, $\frac{C}{A+C}$, $\frac{A}{C}$

Lx/La>Lx/(La+Lb+...Lx+L0)>t Lx/Lb>Lx/(La+Lb+...Lx+L0)>t

Lx/L0>Lx/(La+Lb+...Lx+L0)>t のすべてが十分に大きい

Lx/(La+Lb+...Lx+L0)>t が十分に大きい

(La+Lb+...Lx+L0)

を知るためには、仮説空間を決めなくては

$$\frac{A}{A+C}$$
, $\frac{C}{A+C}$, $\frac{A}{C}$

Lx/La>Lx/(La+Lb+...Lx+L0)>t

Lx/Lb>Lx/(La+Lb+...Lx+L0)>t

. . .

Lx/L0>Lx/(La+Lb+...Lx+L0)>t のすべてが十分に大きい

Lx/(La+Lb+...Lx+L0)>t が十分に大きい

仮説空間の広さ

- ・「犯人は誰だ?」
 - 仮説空間を広げる
 - 「AもBもCもDも…、みんな犯人かもしれない」
 - 「アリバイのない人はみんな」
 - •「容疑者以外もみんな」

Lx/La

Lx/Lb

• • •

Lx/L0

のすべてが十分に大きい

すべての人を仮説空間にとる(?)

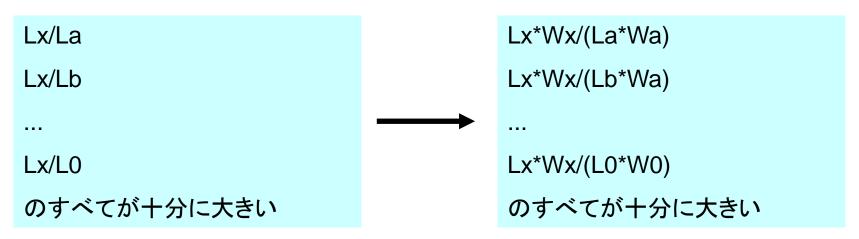
- ・代表的な人ではなく
- すべての人

一番大事なのは、数え落としがないこと

数え上げた上で、必要なら消去しよう

すべての人を仮説空間にとる(?)

- 代表的な人ではなく
- すべての人


一番大事なのは、数え落としがないこと

数え上げた上で、必要なら消去しよう

- ・ 代表的な人
 - 集団の平均値(など)を利用
 - マーカーごとの平均値
 - マーカー組み合わせの平均値・・・出身地を考慮???
- すべての人
 - すべてが無理でも、『十分に多くの標本』があれば、標本から「すべての人」の分布のばらつき(の可能性)を考慮して、『すべての人』を仮説空間に取れる(か?)

仮説の重み付け

- 「犯人らしいのは誰だ?」
 - 仮説空間は変えずに、重み付け(Wi)を変える
 - 現場にいなかったことが確かな人が遺留品を残す可能性は「非常に低い(ゼロではない)」~無視する??
 - その他の証拠により、「疑わしい容疑者」と「疑わしくない容疑者」がいるなら、それで重み付けする

仮説の重み付け

- 「犯人らしいのは誰だ?」
 - 仮説空間は変えずに、重み付け(Wi)を変える
 - 現場にいなかったことが確かな人が遺留品を残す可能性は「非常に低い(ゼロではない)」~無視する??
 - その他の証拠により、「疑わしい容疑者」と「疑わしくない容疑者」がいるなら、それで重み付けする

重み付けWiはどれくらい正確?

心象の影響を受ける???

人によって異なる???

ならば、Wiなしでデータ提示するしかないのか・・・

Lx*Wx/(La*Wa)

Lx*Wx/(Lb*Wa)

. . .

Lx*Wx/(L0*W0)

のすべてが十分に大きい

仮説の重み付け

- 「犯人らしいのは誰だ?」
 - 仮説空間は変えずに、重み付け(Wi)を変える
 - 現場にいなかったことが確かな人が遺留品を残す可能性は「非常に低い(ゼロではない)」~無視する??
 - その他の証拠により、「疑わしい容疑者」と「疑わしくない容疑者」がいるなら、それで重み付けする

La<=1 なので Lx*Wx/(La*Wa) >= Lx*Wx/Wa

Lx*Wx/Waが十分に大きい仮説Aは Laが計算できなくても無視してよい Lx*Wx/(La*Wa)

Lx*Wx/(Lb*Wa)

• • •

Lx*Wx/(L0*W0)

のすべてが十分に大きい

仮説の省略と不等号の向き

検察の仕事

La<=1 なので

Lx*Wx/(La*Wa) >= Lx*Wx/Wa

この不等号の向きを確かめるためならば

Lx*Wx/Waが十分に大きい仮説Aは Laが計算できなくても無視してよい

Lx*Wx/(La*Wa)

Lx*Wx/(Lb*Wa)

. . .

Lx*Wx/(L0*W0)

のすべてが十分に大きい

弁護の仕事

Lx<=1 なので

 $Lx*Wx/(La*Wa) \le Wx/(La*Wa)$

この不等号の向きを確かめるためならば

Wx/(La*Wa)が十分に小さい仮説Aを 提示すればよい

Lx*Wx/(La*Wa)

Lx*Wx/(Lb*Wa)

...

Lx*Wx/(L0*W0)

のどれか一つが十分に小さい

仮説の省略と不等号の向き

Lx*Wx/Waが十分に大きい

Wx/(La*Wa)が十分に小さい

左右で用いるWが異なれば、両方が同時に成立する

重み付けWiはどれくらい正確?

心象の影響を受ける???

裁判員・裁判官によって異なる???

ならば、Wiなしでデータ提示するしかないのか・・・

Lx*Wx/(La*Wa)

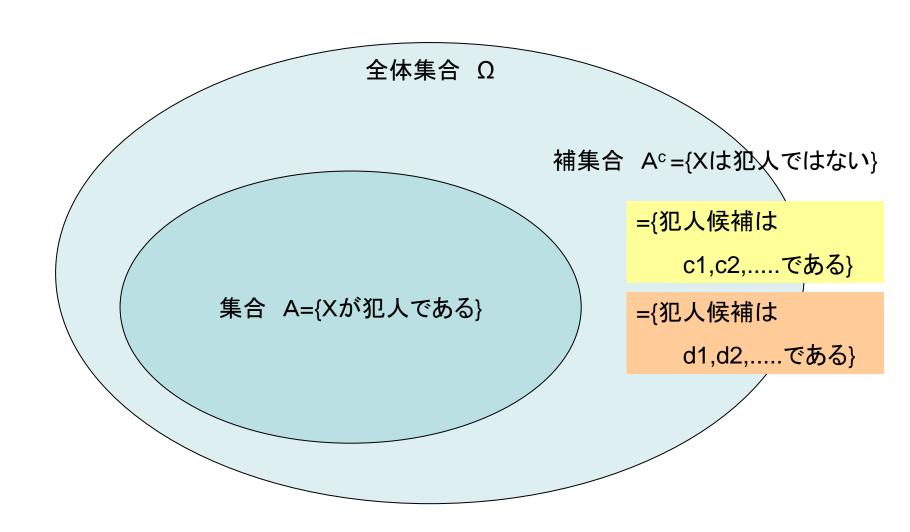
Lx*Wx/(Lb*Wa)

. . .

Lx*Wx/(L0*W0)

のすべてが十分に大きい

Lx*Wx/(La*Wa)


Lx*Wx/(Lb*Wa)

...

Lx*Wx/(L0*W0)

のどれか一つが十分に小さい

異なる仮説空間は較べられない

複合的な仮説

- 試料DNAはXのものである
- 試料DNAはXと●のものである
- 試料DNAはXと●と▲のものである
- 試料DNAはXと●と▲と…

- 試料DNAは●のものである
- 試料DNAは●と▲のものである
- •

複合的な仮説

- 複合的な仮説のそれぞれは、仮説空間の個々の要素
 - 相互に排他的
 - 全部を合わせると全体集合になる
- では、「Xは犯人である」という仮説は?
 - 試料DNAはXのものである
 - 試料DNAはXと●のものである
 - 試料DNAはXと●と▲のものである
 - 試料DNAはXと●と▲と... の和集合

複合的な仮説の一部を省略する

- その省略は本当に全体の解釈に影響を与えないほど小さいのか
 - その確認はどうやって計算するのか・・・

多すぎる仮説

分子・分母の項を減らして不等式が満足できる?

- 「非常に低い(ゼロではない)」~無視する?
 - L1=L(X)+L(Xと●)+L(Xと●と▲)+L(Xと●と▲と…)+...
 - L2=L(●)+L(●と▲)+L(●と▲と...)+...
 - L1/L2
 - L1w=L(X)*W(x)+L(Xと●)*W(Xと●)+...
 - $L2w=L(\bullet)*W(\bullet)+L(\bullet \succeq \blacktriangle)*W(\bullet + \blacktriangle)+...$
 - -L1w/L2w
 - L1/L2 > t, L1/L2 < t', L1w/L2w > t, L1w/L2w < t'の不等式を説明するのに、分子と分母のどちらかの仮説のみを省略することは可能だが、分子・分母を省略するとき、簡単に不等式を保証できない・・・</p>

実例?

まとめ1 仮説空間のこと

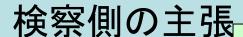
- 仮説はいくつ?
- 仮説は排他的?
- 仮説を集めると全体になっている?
- 補集合となっている仮説の構成は?
- ・ 興味のある仮説は単独か複合か?

まとめ2 尤度の計算は仮説ごとの確率計算

- 仮説ごとに確率は計算できる?
 - 事象の場合わけは済んでいる?
 - 事象の確率計算は一意に決まっている?
 - 事象の確率計算が一意でなければ、尤度の計算 も変わってくる

まとめ3

仮説の重み付け(事前確率)のこと


- 重み付けの根拠は?
 - DNA試料データ以外のデータ
 - 心象も入る・・・
 - 裁判員・裁判官によって変わるもの
 - もちろん、検察・弁護は異なる「心象」に立っている
- 重み付けは一意に決まる?
 - 決まらなければ、コンセンサスを取らないと先に進めない
- 重み付けは複数ある?
- 新たな重みが出るたびに計算しなおすくらいなら、 重み付け計算は「つどつど」にするしかない?

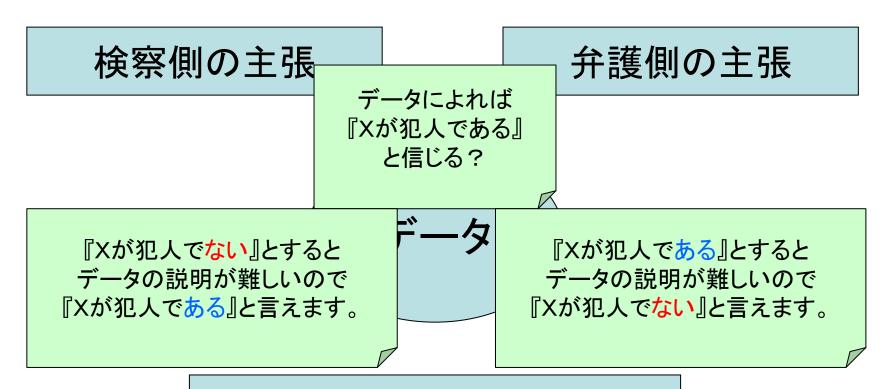
事象の空間

珍しさの尺度 P値

尤度の比較 ↓ 仮説の棄却

DNA鑑定

データによれば 『Xが犯人である』 と信じる?


弁護側の主張

『Xが犯人で<mark>ある</mark>』とすると データの説明が容易なので 『Xが犯人で<mark>ある</mark>』と言えます。 データ

『Xが犯人で<mark>ない</mark>』とすると データの説明が容易なので 『Xが犯人で<mark>ない</mark>』と言えます。

裁判員・裁判官側の主張・判断

仮説の棄却

裁判員・裁判官側の主張・判断

尤度の比較 仮説の棄却

検察側の主張

弁護側の主張

データによれば 『Xが犯人である』 と信じる?

『Xが犯人で<mark>ない</mark>』とすると データの説明が難しいので 『Xが犯人で<mark>ある</mark>』と言えます。 データ

『Xが犯人で<mark>ある</mark>』とすると データの説明が難しいので 『Xが犯人で<mark>ない</mark>』と言えます。

『Xが犯人である』とすると データの説明が容易なので 『Xが犯人である』と言えます。 官側の

『Xが犯人で<mark>ない</mark>』とすると データの説明が容易なので 『Xが犯人で<mark>ない</mark>』と言えます。

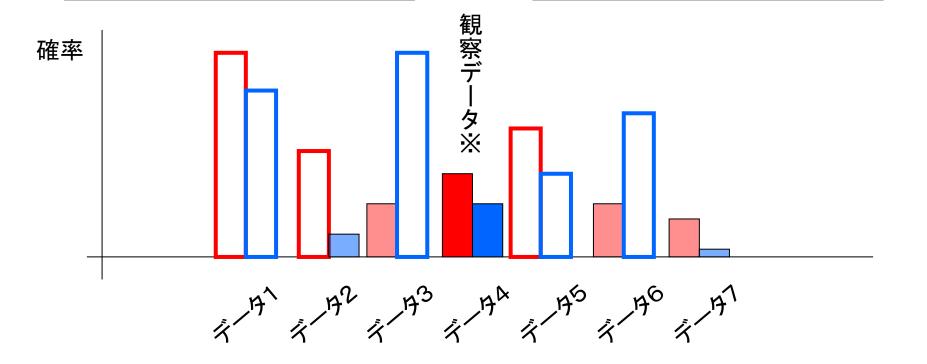
仮説の棄却

『Xが犯人で<mark>ない</mark>』とすると データの説明が難しいので 『Xが犯人で<mark>ある</mark>』と言えます。 『Xが犯人で<mark>ある</mark>』とすると データの説明が難しいので 『Xが犯人でない』と言えます。

- データをもたらしにくい仮説は「真でない」と棄 却する
- ・「『棄却した仮説』とは異なる仮説」を信じても いいかな

正確P値

- ある仮説のもとでは、いろいろなデータを得る可能性がある
- それぞれのデータを取得する確率が計算できる
- その確率の和は1
- 今、あるデータが得られたときに、そのデータと同程 度かそれ未満の確率であるようなデータのすべての 確率を足し合わせたものが正確P値
- データの珍しさがO-1で表される
 - 最も確率の高いデータが得られたときのP値は1
 - 最も確率の低いデータが得られたときのP値はそのデータを得る確率そのもの


4つの数字A, B, C, D 解釈は1つ

『Xが犯人で<mark>ない</mark>』とすると データの説明が難しいので 『Xが犯人で<mark>ある</mark>』と言えます。

データ4の確率が低いです!

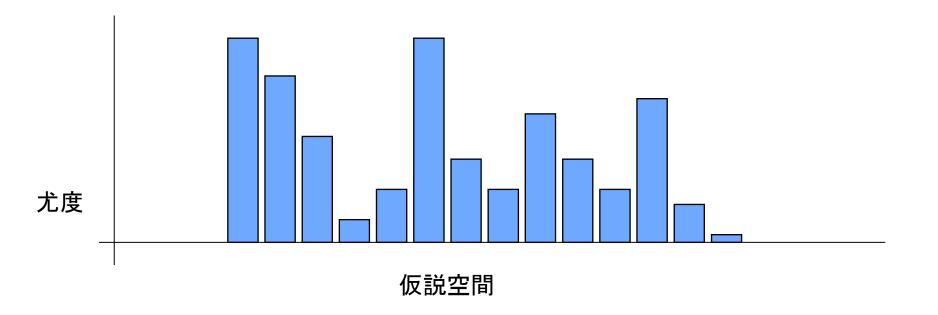
『Xが犯人で<mark>ある</mark>』とすると データの説明が難しいので 『Xが犯人でない』と言えます。

データ4の確率が小さいです!

観察データ(事象)の軸について

- ある観察をしたときに、起こりうる現象の集合
 - 個々の要素が事象
 - 個々の要素は排他的
 - 全部の事象を足し合わせると、現象全体になる
 - 個々の事象の起きる確率を足し合わせると1になる
 - 仮説空間と同じく事象空間がある
 - 確率的に起きること
 - 実験エラーを考慮すると、起こりえない事象はない
 - 観察データは、複数の「真実」に対応しているかもしれない
 - 分解が必要
 - こちらは裁判官・裁判員の心象を排除できるはずの領域・・・
 - 実験精度・エラーデータなどについて、実験者の心象は排除できない、か(?)

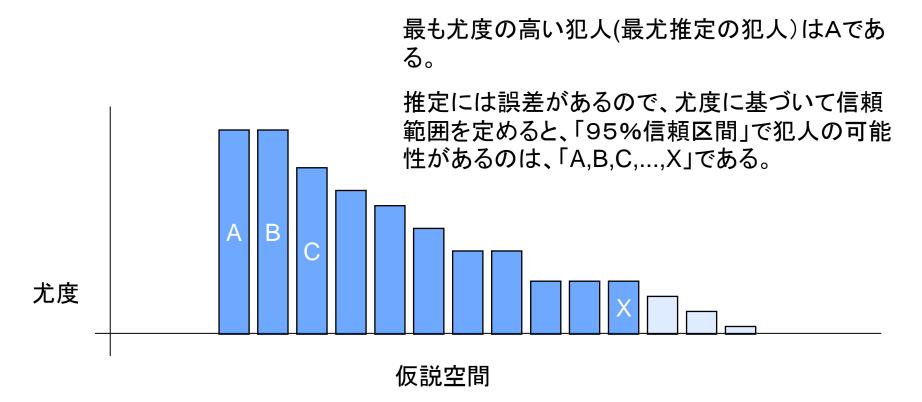
(最尤)推定と推定の信頼区間


観察データのみに着目して、 尤度に話を戻します

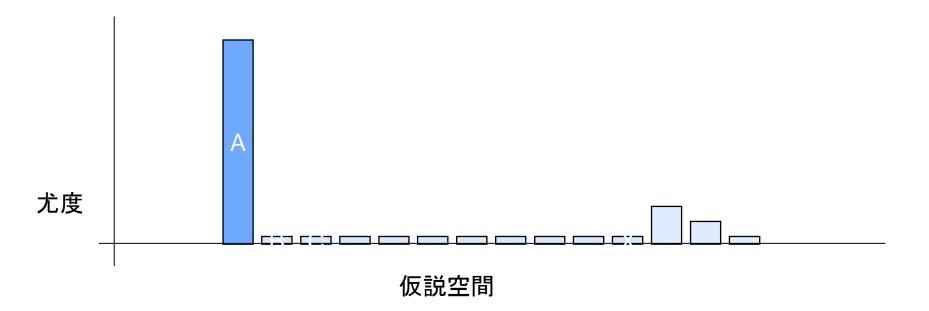
最尤推定

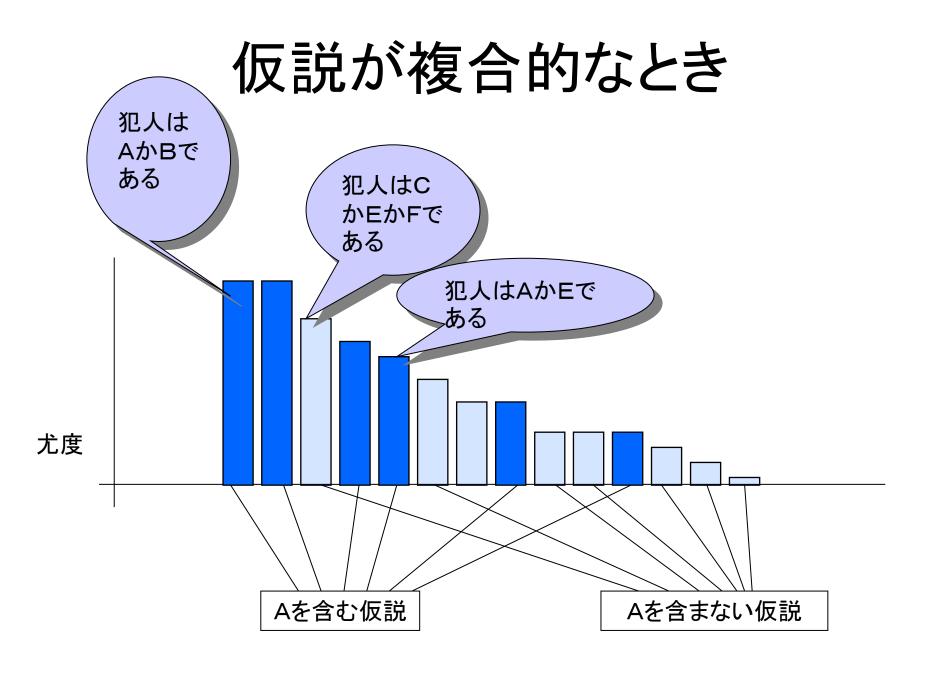
犯人は誰?	尤度	
Α	La	
В	Lb	
•••		
X	Lx	
犯人はいない	LO	

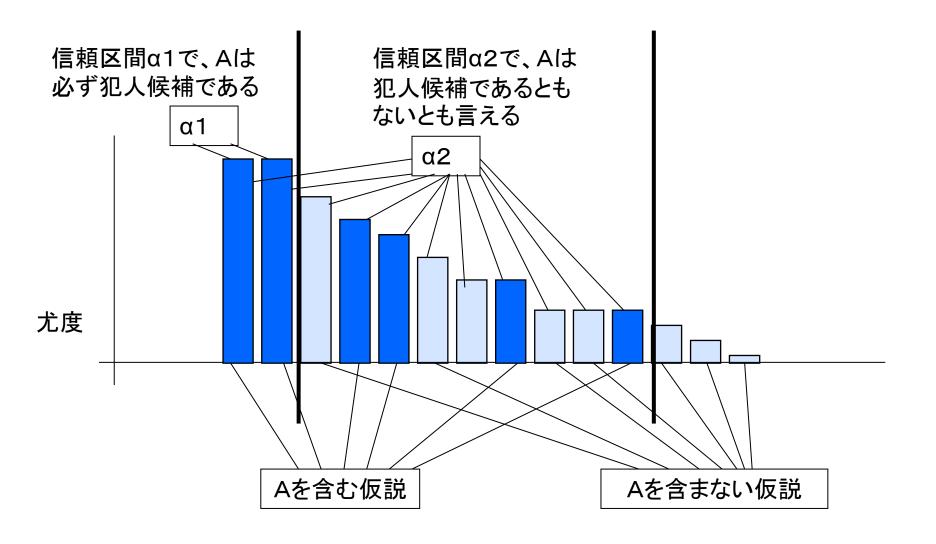
- 仮説最尤推定 仮説
 - 数ある仮説の中で尤度が最大の


すべての仮説について尤度を求める

尤度の高い順に並べて




全体を1とみなして、上位から95%を占める仮説の範囲を定める


全体を1とみなして、上位からa%を占める仮説の範囲を定める

「α%信頼区間」で犯人の可能性があるのは、「Aだけ」である。

仮説が複合的なとき

実例?

その他に気づくことなど(1)

- DNA鑑定の有効数字のこと
 - DNA鑑定は証拠の1つ
 - -他の証拠が「犯人はXである」「犯人はXではない」という仮説に関して、おおまかな尤度しか与えないとき、DNA鑑定が細かすぎる尤度を与えているのではないか?

その他に気づくことなど(2)

- DNA鑑定も証拠の1つ
- その他の証拠
 - 証言「この人が現場で被害者を刺していました」
 - 証言「この人が●時頃、×を走っていました」
 - 指紋が検出されました。その指紋は「容疑者のものと『断定』されました」・・・『断定』とは?
- これらと同じ次元で考えなくては使えないのでは・・・
- これらは証拠としてどう使われている?
- その目で見直すとDNA鑑定はどう見えてきて、その他の「証拠」はどう見えてくるのか?

その他に気づくことなど(3)

- ・ 条件・立場の違いでの違い
 - DNA鑑定の解釈は、条件によって変わる
 - 最も検察寄りの条件での解釈と最も弁護寄りの 条件での解釈とが別の意味での「信頼区間」であ ろうか

その他気づくことなど(4)

- パブリケーション・バイアス
 - 論文が掲載されるとき、その論文は「意義深い」ものに限られる。これをパブ リケーション・バイアスと言う。
 - 「ぱっとしない研究成果」はそれが事実であっても陽の目を見ない
 - 1つのテーマに関して発表された複数の論文の結果を統合して評価する(メタアナリシス)では、この影響をパブリケーション・バイアスと呼んで問題視する。
- (誰かが)主張を正当化するのに適した証拠は提示され、そうでない証拠 は提示されないのではないか。
- 使いやすそうな証拠は提示され、迷いを誘う証拠は提示されていないことはないか。
- 活用データの操作は、科学研究にあっては『不正義』の代表なのだが・・・